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Abstract
Multiplicities of periodic orbit lengths for non-arithmetic Hecke triangle groups
are discussed. It is demonstrated both numerically and analytically that at least
for certain groups the mean multiplicity of periodic orbits with exactly the same
length increases exponentially with the length. The main ingredient used is the
construction of a joint distribution of periodic orbits when group matrices are
transformed by field isomorphisms. The method can be generalized to other
groups for which traces of group matrices are integers of an algebraic field of
finite degree.

PACS numbers: 02.10.De, 02.10.Yn, 03.65.Sq, 05.45.Mt

1. Introduction

For chaotic systems, the density of classical periodic orbits with a given length increases
exponentially. In particular, for all constant negative curvature surfaces generated by discrete
groups one has the universal asymptotics (see, e.g., [11])

ρtotal(l)
l→∞−→ el

l
. (1)

Much less is known about multiplicities of periodic orbits with exactly the same length.
Usually, it is assumed that the mean length multiplicity of periodic orbits for generic systems
depends only on exact symmetries and for models without geometrical symmetries the mean
multiplicity ḡ equals 2 or 1 for systems respectively with or without time-reversal invariance.

Physically it means that, in general, there exists no reason that two different periodic
orbits would have the same length except for time-reversal invariant systems where almost
all trajectories can be traversed in two opposite directions which implies that ḡ = 2. In a
semiclassical approach to spectral statistics of chaotic systems the distinction between these
two classes of models is reflected in different behaviour of the two-point correlation form
factor at the origin which agrees with the predictions of the random matrix theory [1, 2].
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For the free motion on constant negative curvature surfaces generated by discrete groups
the situation is different. In such hyperbolic models periodic orbits are in one-to-one
correspondence with conjugacy classes of group matrices and the length of a periodic orbit,
lp, is directly related to the trace of a matrix M representing each class (see, e.g., [11]),

|Tr M| =
{

2 cosh lp/2 if det M = 1

2 sinh lp/2 if det M = −1.
(2)

Hence, any relations between traces of group matrices imply connections between periodic
orbit lengths.

The extreme case corresponds to the so-called arithmetic groups (see, e.g., [4] and
references therein). For such groups traces of group matrices can take only quite restricted
sets of values and the number of possible traces less than a given value is asymptotically [4]

N(|Tr M| < X)
X→∞−→ CX (3)

with a system dependent constant C. Because X
l→∞−→ el/2 but not all possible values of traces

really appear for group matrices, the number of periodic orbits with different lengths when
lp → ∞ has the following upper bound [4]:

Ndiff(lp < l) � C el/2. (4)

Define the mean multiplicity of periodic orbit length as the ratio of the density of all periodic
orbits to the density of periodic orbits with different lengths,

ḡ(l) = ρtotal(l)

ρdiff(l)
(5)

where ρdiff(l) = dNdiff(lp < l)/dl.
From the above formulae one proves [4] that for arithmetic groups the mean multiplicity

is exponentially large and has the following estimate from below:

ḡ(l) � 2 el/2

Cl
. (6)

In classical mechanics such large multiplicities play a minor role but their interference
drastically changes the quantum mechanics of arithmetic groups. In particular, the spectral
statistics of arithmetic systems is close to the Poisson statistics typical of integrable systems
and not to the random matrix statistics conjectured for chaotic models [4–6].

Arithmetic systems are very exceptional but according to the Horowitz–Randol theorem
[12, 13] for all hyperbolic models generated by discrete groups multiplicities are unbounded.
Nevertheless, multiplicities covered by this theorem are quite rare and an a priori assumption
would be that for non-arithmetic hyperbolic models the mean multiplicity equals 2 as for
generic time-reversal invariant systems.

Numerical calculations performed in [4] indicated that it is not always the case. In that
paper certain non-arithmetic Hecke triangles were considered and it was observed that mean
multiplicity of periodic orbits with length l seems to increase exponentially,

ḡ(l) ∼ eλl (7)

with an exponent λ < 1/2.
The purpose of this paper is twofold. First, we perform numerical calculations of periodic

orbits for much larger lengths than in [4] and, second, we develop a method which gives a
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lower bound of multiplicities, thus in certain cases confirming analytically exponential growth
of multiplicities.

The plan of the paper is the following. In section 2 we discuss general properties of
Hecke triangle group matrices. In section 3 results of numerical calculations of periodic
orbit length multiplicities for a few Hecke triangles are presented. As traces of Hecke
triangle group matrices are integers of an algebraic field, each group matrix defines not one
but a few different lengths corresponding to different isomorphisms of the basis field. In
section 4 the construction of the joint distribution for periodic orbits with all transformed
lengths fixed is discussed. In section 5 it is demonstrated how the knowledge of this joint
distribution permits us to calculate the lower bound of the periodic orbit length multiplicity.
In section 5.1 the computations are performed for the simplest case of Hecke groups with
n = 5, 8, 10, 12 which are characterized by the existence of only one non-trivial isomorphism.
In appendix A it is proved that for Hecke triangle groups all transformed lengths are smaller
than the true length. This inequality is sufficient to ensure that for Hecke groups with only
one non-trivial isomorphism length multiplicities increase exponentially. Our results agree
well with direct numerical computations of periodic orbit multiplicity for these groups. In
section 5.2 other Hecke groups are briefly considered. It appears that in all investigated cases
except groups with one non-trivial isomorphism length multiplicities increase so slowly that a
direct check is practically impossible. In section 6 we briefly discuss the influence of periodic
orbit length multiplicities on the spectral statistics for corresponding systems. In section 7 a
summary of the results is given. In appendix B a saddle point method of calculation of the
joint distribution of periodic orbit lengths is discussed.

2. Hecke triangles

Hecke triangles are hyperbolic triangles with angles 0, π/2, π/n with integer n � 3. All
of them are fundamental regions of discrete groups Gn generated by reflections across their
sides. Let us denote the reflection across the side connecting angles 0 and π/2 by A, the one
across the side connecting angles 0 and π/n by B and the last one by C. From geometrical
considerations these transformations obey the defining relations

A2 = B2 = C2 = 1 (AC)2 = (BC)n = −1. (8)

The explicit form of A,B and C can be chosen as follows:

A =
(−1 0

0 1

)
B =

(−1 2 cos π/n

0 1

)
C =

(
0 1
1 0

)
. (9)

An arbitrary matrix from the Hecke triangle group Gn is a word of these letters. Due to (8)
these symbols have a complicated grammar. For our purposes, it is convenient to introduce
new symbols

αm
1 = C(AB)m

αm
2 = CB(AB)m

αm
3 = CBC(AB)m (10)

. . . . . .

αm
n−2 = CBCB . . .︸ ︷︷ ︸

n−2 symbols

(AB)m

where m = 1, 2, . . . are positive integers.
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Explicitly, up to an inessential overall sign

αm
2k+1 =

( −ak αmak + ak−1

−ak+1 αmak+1 + ak

)
αm

2k =
(−ak−1 αmak−1 + ak

−ak αmak + ak+1

)
(11)

from where now we denote

α = 2 cos π/n (12)

and ak ≡ ak(α) are the Chebyshev polynomials of the second kind of α,

ak = sin(kπ/n)

sin(π/n)
. (13)

Using the defining relations (8) one can prove [4] that conjugacy classes in Gn (and,
consequently, periodic orbits in Hecke triangles) can be constructed as free words in these new
symbols with the only restriction that cyclic permutations correspond to the same orbit.

Due to the specific form of generators (9) matrix elements of the Hecke triangular group
matrices are polynomials with integer coefficients of the variable α ≡ 2 cos π/n, thus forming
naturally a subfield of the cyclotomic field of degree 2n (the field which is generated by the
primitive root of equation x2n = 1).

The constant α defined in (12) obeys a polynomial equation PN(α) = 0 with integer
coefficients

PN(x) =
∏

k=odd
(k,n)=1

(x − αk(n)) = xN + · · · (14)

where

αk(n) = 2 cos(πk/n) (15)

and the product is taken over all odd integers k coprime with n. The total number of such
integers and, consequently, the degree of the defining equation is

N = 1
2ϕ(2n) (16)

where ϕ(p) is the Euler ϕ-function which counts the number of integers less than p and
coprime with p.

In table 1 the explicit forms of the defining polynomials for low values of n are presented.
In the last column of this table we give for later use the discriminant of these polynomials
defined as the square of the product of all roots,

�n =
∏

k<m<N

[αk(n) − αm(n)]2 (17)

where αk(n) is given by (15), and the product is taken over all odd integers k < m both
coprime with n. For even n and odd k αn−k(n) = −αk(n), and

�n = 2N�(e)
n �(o)

n (18)

where �(e,o)
n are the discriminants of even and odd powers of α,

�(e)
n =

∏
k<m�N/2

[
α2

k (n) − α2
m(n)

]2
(19)

�(o)
n =

∏
k<m�N/2

[
αk(n)αm(n)

(
α2

k (n) − α2
m(n)

)]2
. (20)
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Table 1. Irreducible monic polynomials defining the field Q(2 cos π/n) for small n. N is the degree
of the polynomial, �n is its discriminant. For n even the discriminant is given as the product of
three terms. The second and third factors represent discriminants for even and odd functions (see
(19) and (20)).

n N PN(x) �

5 2 x2 − x − 1 5
7 3 x3 − x2 − 2x + 1 72

8 4 x4 − 4x2 + 2 24 × 23 × 24

9 3 x3 − 3x − 1 34

10 4 x4 − 5x2 + 5 24 × 5 × 52

11 5 x5 − x4 − 4x3 + 3x2 + 3x − 1 114

12 4 x4 − 4x2 + 1 24 × 12 × 12
13 6 x6 − x5 − 5x4 + 4x3 + 6x2 − 3x − 1 134

14 6 x6 − 7x4 + 14x2 − 7 26 × 72 × 73

15 4 x4 + x3 − 4x2 − 4x + 1 32 × 53

Therefore all matrix elements and, in particular, traces of Hecke group matrices have the
following form,

Tr M =
N−1∑
k=0

nkα
k (21)

with integer coefficients nk .
As matrix elements of Hecke groups are algebraic integers of the totally real field

Q(2 cos π/n) it is natural to consider in parallel all isomorphisms of this field defined by
the following substitutions,

ϕk : α −→ αk = 2 cos
πk

n
(22)

for all odd integers k < n coprime with n.
In general, the number of such isomorphisms equals the degree of the defining polynomial

but in our case α and −α both correspond to the same group. Hence, when this transformation
belongs to the group of isomorphisms (which is the case for even n), it does not change
periodic orbit lengths. Consequently, the dimension of the group of isomorphisms of periodic
orbit lengths, q, is

q =
{

N for odd n

1
2N for even n.

(23)

In particular, the following four cases correspond to the simplest case of the groups of
isomorphisms of the order 2 (cf table 1):

n = 5, 8, 10, 12. (24)

It appears that multiplicities of periodic orbit lengths depend strongly on the number of
isomorphisms so we consider first the case (24).

3. Numerical calculations

In figure 1 we present the numerically computed multiplicity for the Hecke triangles
(0, π/2, π/n) with n = 5, 8, 10, 12 for lengths l < 20. White lines indicate a two-parameter
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0 5 10 15 20
l

0

5

10

15

20

g(
l)

Figure 1. Mean multiplicities of periodic orbit lengths for Hecke triangles (0, π/2, π/n) with
(from top to bottom) n = 12, n = 5, n = 8 and n = 10 for l < 20. White lines are numerical fits
(25)–(28).

fit to these data in the form ḡ(l) ≈ an ebnl,

n = 5: ḡ(l) ≈ 1.235 e0.114l (25)

n = 8: ḡ(l) ≈ 1.095 e0.114l (26)

n = 10: ḡ(l) ≈ 1.143 e0.065l (27)

n = 12: ḡ(l) ≈ 0.986 e0.150l . (28)

Expressions (25)–(28) fit numerical data in the given interval of lengths pretty well. But
they are purely best least-square numerical fits and no attempts were made to determine the
accuracy of coefficients. In section 5.1 it is demonstrated that our approach suggests different
formulae for these quantities (see (75)) which, nevertheless, are practically indistinguishable
from the above simple expressions in the considered interval of lengths (cf figure 9).

For larger lengths the exponential proliferation of periodic orbits makes it difficult to
compute and store in the memory all periodic orbits. Nevertheless the determination of
periodic orbits in a reasonably short interval of lengths is still feasible. In figure 2 we present
the result of the numerical computation of the length multiplicity for the Hecke triangle with
n = 5 up to l = 25. Each small circle in this figure for l > 20 corresponds to one million
periodic orbits. The solid line is the fit (25) obtained from data at small l. It is clearly seen
that accuracy of the fit does not change noticeably with the increasing periodic orbit lengths.

4. Length distribution for different isomorphisms

For the Hecke triangle groups (and for certain other groups as well) traces of group matrices
are integers of an algebraic field of finite degree. Therefore each group matrix M gives rise
not only to one usual length (2) but also to q different ‘lengths’ corresponding to q different
isomorphisms of the basis field applied to a matrix M. Asymptotically

lk = 2 ln |Tr ϕk(M)|. (29)
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l

0

10

20

30

g(
l)

Figure 2. Mean multiplicities of periodic orbit lengths for the Hecke triangle with angles
(0, π/2, π/5) for l < 25. The solid line is the fit (25).

In this definition l1 corresponding to the identity transformation is the true length of a periodic
orbit and all other lk with k � 2 are additional quantities which we call transformed lengths.

For arithmetic systems (see, e.g., [4]) transformed traces are restricted,

|Tr ϕk(M)| � 2 (30)

for all k � 2 which leads to very large length multiplicities for such groups (6).
The main ingredient of our approach to the problem of length multiplicity for non-

arithmetic groups is the determination of the joint density of periodic orbits in intervals
lk, lk + dlk for all k � 1. For clarity we first consider groups with only one non-trivial
isomorphism (24) where each hyperbolic group matrix permits us to define two lengths, l1
and l2.

Let R(l1, l2) dl1 dl2 be the number of periodic orbits with the first length in the interval
l1, l1 + dl1 and the second (transformed) length in the interval l2, l2 + dl2. Taking into account
(1) one concludes that

R(l1, l2) ≈ el1

l1
P(l1, l2) (31)

where P(l1, l2) has the meaning of the probability density of periodic orbits with lengths l1
and l2 normalized such that∫ ∞

−∞
P(l1, l2) dl2 = 1. (32)

No general arguments determining the form of P(l1, l2) are known to the authors. As l1 is
only one fixed quantity with the dimension of the length, from physical considerations it is
quite natural to assume that for large l1 and l2 this function has the following scaling form (see
also appendix B for another argument),

P(l1, l2) = A(l1) exp[l1f (l2/l1)] (33)

with a certain (smooth) scaling function f (u) where u is the ratio of two lengths.
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–10 0 10 20
l2

0

0.05

0.1

0.15

P
(l

1
, l

2)

Figure 3. Probability density of transformed length with l1 = 19.8 for the Hecke triangle with
n = 5. The thick line represents the Gaussian fit (36), (37).

When l1 → ∞ the prefactor A(l1) can be determined in the saddle point approximation
from the normalization condition (32),

A(l1) = 1√
2πσ 2l1

(34)

where σ 2 = 1/|f ′′(uc)|. Here uc is the point of the maximum of f (u): f ′(uc) = 0, and
f ′′(uc) is the second derivative of the function f (u) at this point. From (32) it follows that
the value of f (u) at the point of the maximum is zero

f (uc) = 0. (35)

In figure 3 we present the numerically computed function P(l1, l2) for the Hecke triangle with
n = 5 for 106 orbits near l1 ≈ 19.8 (which corresponds to |Tr M| = 20 000) together with the
Gaussian fit to the data in the form

P(l1, l2) = a0 exp

(
− (l2 − λ)2

2σ 2

)
. (36)

The least-square fit gives the following values of the parameters:

a0 = 0.116 λ = 6.69 σ 2 = 11.74. (37)

In figure 4 the best fit values of λ(l1) and σ 2(l1) are given for different values of l1. The data
are linear on l1 and can be approximated by the following straight lines

λ = 0.330l1 + 0.187 σ 2 = 0.616l1 − 0.337 (38)

which support the scaling ansatz (33).
The peaks in figure 3 correspond to words in the code (11) with a small number of letters

αm
k but with big values of m. Ignoring all elements except those multiplied by the largest

possible numbers of m one can approximate the periodic orbit length as follows:

l ≈ 2 ln
(
αp m1 . . . mp ak1 . . . akp

)
. (39)
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Figure 4. Gaussian fit parameters (36) versus the length of periodic orbits for the Hecke triangle
with n = 5. Lower line: λ. Upper line: σ 2. Solid lines are the linear fits (38) to these data.

Hence, in this approximation the difference between transformed lengths and the true length
is a finite constant,

lk − l1 ≈ 2 ln
(
ϕk

(
αpak1 . . . akp

)) − 2 ln
(
αpak1 . . . akp

)
. (40)

To compute the joint distribution of transformed lengths one considers periodic orbits with the
true length confined in a small interval. The above expression means that orbits corresponding
to small numbers of initial symbols have transformed lengths at finite distances from l1 and,
consequently, they produce peaks at these distances. The quality of such approximation
quickly deteriorates with increasing p due to omitting the lower powers of m and in real
calculations only a few peaks with small p are visible.

For the Hecke triangle with n = 5 ak defined in (13) are either 1 or α, and all differences
between two lengths are

l2 − l1 ≈ 2m ln

(√
5 − 1√
5 + 1

)
≈ −1.92 m (41)

with integers m which agree well with the positions of the peaks in figure 3.
In figures 5–8 we plot numerically computed scaling functions f (u) for the Hecke triangles

with n = 5, n = 8, n = 10 and n = 12 for different intervals of periodic orbit lengths. The
curves for different lengths seem to be superimposed thus supporting the scaling ansatz (33).
Irregular points at l2/l1 ≈ 1 correspond to the above-mentioned peaks (40) related to words
with small number of symbols and are irrelevant at large l1.

The scaling functions f (l2/l1) for the Hecke triangles with n = 5 and n = 8 are close to
each other and can be reasonably well described by the following parabolic fit,

f (x) ≈ −0.094 + 0.56x − 0.83x2 (42)

indicated by dashed lines in figures 5 and 6.
The scaling functions for the Hecke triangles with n = 10 and 12 have a more complicated

form. In figure 7 the dashed line indicates the cubic fit to the data in the interval [0.4, 1],

f (x) ≈ 0.028 − 0.66x + 2.08x2 − 1.77x3. (43)
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–0.2 0 0.2 0.4 0.6 0.8 1
l2 /l1

–0.3

–0.2

–0.1

0.0

f(
l 2

/l 1
)

Figure 5. Scaling function f (l2/l1) for the Hecke triangle with n = 5. Circles, triangles and
squares represent data for 106 orbits near respectively l1 ≈ 19.8, l1 ≈ 19.47, l1 ≈ 19.02. The
solid line connects points with l1 ≈ 19.8. The dashed line is the parabolic fit (42) to the data with
l1 ≈ 19.8. The thick solid line is the straight line y = (x − 1)/2.

–0.2 0 0.2 0.4 0.6 0.8 1
l2 /l1

–0.3

–0.2

–0.1

0.0

f(
l 2

/l 1
)

Figure 6. The same as in figure 5 but for the Hecke triangle with n = 8.

In figure 8 the dashed line shows the parabolic fit in the interval [0.1, 1],

f (x) ≈ −0.014 + 0.21x − 0.73x2. (44)

For Hecke triangle groups with n different from (24) there exist more than one non-trivial
isomorphisms and, consequently, the joint distribution of all lengths has the form similar to
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Figure 7. The same as in figure 5 but for the Hecke triangle with n = 10. The dashed line is the
cubic fit (43) to the data with l1 ≈ 19.8 in the interval [0.4, 1].
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f(
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)

Figure 8. The same as in figure 5 but for the Hecke triangle with n = 12. The dashed line is the
parabolic fit (44) to the data with l1 ≈ 19.8 in the interval [0.1, 1].

(31) but with larger number of transformed lengths,

R(l1, l2, . . . , lq) ≈ el1

l1
P(l1, l2, . . . , lq). (45)

The analogue of the scaling ansatz (33) in this case is

P(l1, l2, . . . , lq) = A(l1) exp

[
l1f

(
l2

l1
, . . . ,

lq

l1

)]
(46)
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with a certain function f (x2, . . . , xq) ≡ f (�x) depended only on ratios xk = lk/ l1 and in the
saddle point approximation

A(l1) =
√

|det ∂2f/∂xi∂xj |
(2πl1)q−1

(47)

where the derivatives are taken at the point of the maximum of f (�x).

5. Number of periodic orbits with different lengths

The importance of the knowledge of the joint distribution of periodic orbit lengths for all
possible isomorphisms is related to the fact that two periodic orbits for Hecke triangle groups
have exactly the same length iff all their transformed lengths are the same.

Let us consider the simplest Hecke group with n = 5. In this case the traces of group
matrices, t1 and t2 = ϕ2(t1) can be written as

t1 = n0 + n1λ1 t2 = n0 + n1λ2 (48)

where n0, n1 are integers, λ1 = 2 cos(π/5) is an element of our basis field and λ2 =
2 cos(3π/5) is the transformed value of λ1.

These equations determine the transformation from variables t1, t2 to variables n0, n1 and

dt1 dt2 = J dn0 dn1 (49)

where the Jacobian of this transformation is the square root of the discriminant (17) of the
defining equation

J = |λ2 − λ1| =
√

�5 =
√

5. (50)

As ti = eli /2 the precedent equation gives

dn0 dn1 = C5 exp(l1/2 + l2/2) dl1 dl2 (51)

with C5 = 1/(4
√

�5).
Because n0 and n1 are integers this equation means that in a volume dl1 dl2 there are at

most [C exp(l1/2 + l2/2)] possible values of n0, n1 ([x] is the integer part of x). This relation
signifies that the density of the maximal number of periodic orbits with different lengths obeys
asymptotically the inequality

ρdiff(l1, l2) � C5 exp(l1/2 + l2/2). (52)

We stress that such arguments can give, in principle, the estimate from above because not all
values of n0 and n1 are possible for the Hecke group Gn, otherwise one obtains the Hilbert
modular groups which are discrete groups only in higher dimensional complex planes.

For other Hecke triangle groups with one non-trivial isomorphism (24) (i.e. for n =
8, 10, 12) the defining equation is of degree 4 but traces of group matrices contain either even
or odd powers of α

t1 = n0 + n2α
2 or t1 = n1α + n3α

3 (53)

and the result is similar to (52)

ρdiff(l1, l2) � Cn exp(l1/2 + l2/2) (54)
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but with

Cn = 1

4
√

�(e)
n

+
1

4
√

�(o)
n

(55)

where �(e,o)
n are discriminants (19) and (20).

For general Hecke group with q isomorphisms

ρdiff(l1, l2, . . . , lq) � Cn exp(l1/2 + l2/2 + · · · + lq/2) (56)

where for odd n

Cn = 1

2q
√

�n

(57)

and for even n

Cn = 1

2q
√

�(e)
n

+
1

2q
√

�(o)
n

. (58)

Equation (45) means that in a volume dl1 . . . dlq there is

ρtot(�l) = el1

l1
A(l1) exp(l1f (l2/l1, . . . , lq/ l1)) (59)

periodic orbits with all transformed lengths fixed. On the other hand in the same volume the
maximum number of periodic orbits with different lengths is restricted by the inequality (56)

ρdiff(�l) � Cn exp(l1/2 + l2/2 + · · · + lq/2). (60)

Consequently, the maximum number of periodic orbits with different lengths is

ρ
(maximum)
diff lengths (l1) =

∫
dl2 . . . dlq

{
ρdiff(�l) if ρdiff(�l) � ρtot(�l)
ρtot(�l) if ρdiff(�l) � ρtot(�l).

(61)

As both densities increase exponentially with l1 the dominant contribution to this integral is
given by vicinities of boundary points where

ρdiff(�l) = ρtot(�l). (62)

In the leading order of l1 these points are determined from the equality of the exponential
factors of these functions,

l1 + l1f (l2/l1, . . . , lq/ l1) = 1
2 (l1 + · · · + lq). (63)

Denoting lk/ l1 by xk one gets the equation independent of l1,

f (x2, . . . , xq) = 1
2 (x2 + · · · + xq − 1). (64)

5.1. Groups with one non-trivial isomorphism

In the simplest case of groups (24) where only one transformed length exists equation (64) is
reduced to the equation of one variable x ≡ x2,

f (x) = 1
2 (x − 1). (65)

In appendix A it is proved that for the Hecke groups the transformed lengths corresponding to
all non-trivial isomorphisms are smaller than the true length

lk < l1. (66)

Consequently, f (x) is situated at the left from the line x = 1 and as f (uc) = 0 f (x) is
negative when x < 1. As uc < 1 equation (65) for groups with one non-trivial isomorphism
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Table 2. Parameters for Hecke triangles with n = 5, 8, 10, 12. The second column is the curvature
in the point of the maximum. The third column gives the value of Cn in (54). The fourth and the
fifth columns are the ordinate of the intersection point and the modulus of the slope of f (x) at
this point. The next three columns are parameters in (74). The last column gives the numerically
computed prefactor in (75).

n σ 2
n Cn xn kn λn νn Gn Kn

5 0.6 0.11 0.74 0.66 0.13 0.35 1.32 2.34
8 0.6 0.15 0.74 0.66 0.13 0.35 1.11 2.22

10 0.55 0.16 0.82 0.82 0.09 0.43 1.22 2.46
12 0.68 0.14 0.64 0.73 0.18 0.39 1.25 1.77

always has a solution x < 1. In table 2 we present approximate values of this intersection
point, xn, for different values of n found from figures 5–8. As claimed in all these cases the
solution exists and xn < 1.

In the next order one can write

l2 = xnl1 + εn. (67)

Expanding equation (62) to the first order of ε one gets

Cn

√
2πσ 2

n l3
1 = exp

(−εn(kn + 0.5) + O
(
ε2
n

/
l1

))
(68)

where kn = |f ′(xn)| is the modulus of the derivatives at the point of the intersection. Therefore

εn = − 1

kn + 0.5
ln

(
Cn

√
2πσ 2

n l
3/2
1

)
. (69)

Together these formulae demonstrate that for the Hecke triangles (24) at the intersection point

ρdiff(l1, l2) = ρtot(l1, l2) ≈ Dn exp(l1(1 + xn)/2) l
−3βn/2
1 (70)

where

βn = 1

2kn + 1
Dn = C

1−βn
n

(2πσn)βn/2
. (71)

The integration in (61) in the limit of large l1 can be performed by parts and finally

ρ
(maximum)
diff lengths (l1) = 2Dn

1 − βn

exp(l1(1 + xn)/2)

l
3βn/2
1

. (72)

The mean multiplicity of periodic orbit lengths is the ratio of the total density of periodic
orbits to the density of orbits with different lengths. Hence

ḡ(l) � Gn

eλnl

lνn
(73)

where

λn = 1 − xn

2
νn = 1 − 3

2
βn Gn = 1 − βn

2Dn

. (74)

In table 2 we present approximate values of these parameters computed from figures 5–8. In
figure 9 we compare data of length multiplicities for the Hecke triangles (25)–(28) with the
formula of the form (73)

ḡ(l) = Kn

eλnl

lνn
(75)
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Figure 9. Comparison of numerically computed fits (25)–(28) for length multiplicities for Hecke
triangles (dotted lines) with formulae (75) with fitted prefactor (solid lines). From top to bottom:
n = 12, n = 5, n = 8, n = 10.

with the computed values of λn and νn from table 2 but with a prefactor Kn calculated from the
best fit to the data (see the last column of table 2). The ‘theoretical’ curves (75) are practically
indistinguishable from the best fits (25)–(28). Note that fitted prefactors are always bigger
than Gn, just confirming that estimates (73) and (74) give only lower bounds. Though in
principle not all integers are allowed in (21), these results seem to indicate that in the mean
the ratio of the density of allowed integers to all integers for the groups (24) is finite.

5.2. General case

For the general case of q > 2 isomorphisms the arguments, in principle, remain the same.
One has to perform the following three steps:

• Check that required solutions of equation (64) do exist.

• Find on a (q − 2)-dimensional manifold of these solutions a point with the maximum of
the sum x2 + · · · + xq .

• Compute the integral (61) in a small vicinity of the point of the maximum.

For groups with only one non-trivial isomorphism the inequality (66) was sufficient to
ensure the existence of a solution of equation (64). For other groups it is not the case and
one has to rely mostly on numerical calculations. For example, the necessary condition of the
existence of solutions of equation (64) is that at the point u2, . . . , uq of the maximum of the
scaling function f (x2, . . . , xq) the sum u2 + · · · + uq is less than 1.

In figure 10 we present the contour plot of the scaling function f (x2, x3) for the Hecke
triangle group with n = 7 computed from 106 points near l1 = 25. The contour lines
correspond to the sections of the scaling function (normalized so that at the maximum it equals
zero) at heights −2 × 10−4k(2k − 1) for k = 1, . . . , 9. Numerically from this figure one gets
that for the Hecke group with n = 7 the solution of equation f (x2, x3) = (x2 + x3 − 1)/2
does exist and the point with the maximum x2 + x3 corresponds approximately to the fourth
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Figure 10. Contour plot of the scaling function f (l2/l1, l3/l1) for the Hecke triangle with n = 7.
The thick line is the solution of equation f (x2, x3) = (x2 + x3 − 1)/2.
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Figure 11. Mean multiplicity for the Hecke triangle with n = 7. The solid line is the fit (78), (79).

contour line. It means that the density of the maximal number of different periodic orbit
lengths increases as

ρ
(maximum)
diff lengths (l1) ∼ e(1−λ7)l1 (76)

where λ7 ≈ 0.006. Correspondingly, the mean multiplicity of periodic orbit lengths can be
estimated (without a prefactor) as

ḡ(l1) > e0.006l1 . (77)

Though it is an exponential increase, the exponent is so small that at really accessible lengths
l1 of the order of 20 it practically remains a constant and the prefactor dominates. In figure 11
we plot the numerically computed mean multiplicity for the Hecke triangle group with n = 7



Multiplicities of periodic orbit lengths for non-arithmetic models 4517

14 16 18
l

1.8

2

2.2

2.4

2.6

g(
l)

Figure 12. Mean multiplicities for the Hecke triangles with n = 9 (the upper curve) and n = 11
(the lower curve). White lines represent additional smoothing of the curves.

(averaged over interval of traces equal to 10). Instead of increasing it shows a slow decrease
but the best fit to the data in the form

ḡ = a
ebl

lc
(78)

gives

a ≈ 3.55 b ≈ 0.007 c ≈ 0.168 (79)

which is larger than (77). Unfortunately, the limited interval of lengths and very slow increase
of the multiplicity do not permit us to obtain clear conclusions.

In figure 12 numerically computed length multiplicities for the Hecke triangles with n = 9
and n = 11 are presented. Similar to the n = 7 case the data indicate a slow decrease which
is more pronounced for the n = 11 triangle. Whether this decrease is just a lower length
phenomenon or multiplicities in these cases tend to a constant, cannot be answered from the
accessible data.

We stress that though the data for the Hecke triangles with n = 7, n = 9 and n = 11
do not show a clear increase of mean multiplicities they fluctuate around values bigger than 2
which differs from the usual expectation. Also in all figures we present multiplicities averaged
over some length. The true multiplicities fluctuate wildly around the mean confirming the
unusual character of the Hecke triangle groups.

6. Spectral statistics of non-arithmetic Hecke triangles

It is well accepted that length degeneracy of periodic orbits has a profound effect on
spectral statistics. According to semiclassical theory of spectral statistics [1, 2] the two-
point correlation form factor for chaotic billiards in the diagonal approximation is

K(diag)(t) = ḡ(l(t))t (80)

where ḡ(l) is the mean multiplicity of periodic orbits with the length l and l(t) = 4πkt .
For systems without (respectively with) time-reversal invariance ḡ = 1 (respectively

ḡ = 2) and (80) gives the first term of the expansion of the two-point correlation form factors
for standard random matrix ensembles (see, e.g., [3]).
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Figure 13. Differences between integrated nearest-neighbour distributions for the Hecke triangles
and the Wigner ansatz for this quantity (thick solid lines). Top—the first 10 000 levels for the
triangle with n = 5, middle—the first 20 000 levels for the triangle with n = 7, bottom—
the first 10 000 levels for the triangle with n = 12. Dashed line—the same quantities but for
the triangles with angles 10π/119, 10π/71, 20π/99, respectively. The thick solid lines in each
graph are the difference between the true GOE prediction and the Wigner ansatz.

For models considered in the preceding sections the mean multiplicity ḡ(l) increases
exponentially as in (75) and the form factor calculated in the diagonal approximation differs
from the random matrix predictions.

To consider the spectral statistics we compute numerically eigenvalues of the Laplace–
Beltrami operator with the Dirichlet conditions on the boundaries of the Hecke triangles for
different values of n. In figure 13 we present the differences between the integrated nearest-
neighbour distributions and the Wigner ansatz for this quantity

(
NW(s) = 1 − eπs2/4

)
for the

Hecke triangles with n = 5, 7, 12. For comparison in these graphs thick solid lines indicate
the difference between the true GOE formula and the Wigner ansatz. From the figure it is
clearly seen that the spectral statistics for the Hecke triangles is quite close to the conjectured
statistics of the Gaussian orthogonal ensemble (GOE) of random matrices. To have an estimate
of statistical errors we compute numerically the same quantities (dashed lines in figure 13) for
non-tessellating triangles of the Hecke type which have two angles π/2 and 0 but instead of
the angle π/n as for the true Hecke triangle we take a certain angle γn sufficiently close to it.
For n = 5, 7, 12 we choose respectively

γ5 = 20π

99
γ7 = 10π

71
γ12 = 10π

119
. (81)

Note that the difference between γn and π/n is quite small

∣∣∣γ5 − π

5

∣∣∣ ≈ 6 × 10−3
∣∣∣γ7 − π

7

∣∣∣ ≈ 6 × 10−3
∣∣∣γ12 − π

12

∣∣∣ ≈ 2 × 10−3. (82)
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Figure 14. Schematic form of the two-point correlation form factor for non-arithmetic Hecke
triangles. The dashed line is the continuation of the GOE form factor to small values of t.

For all cases (except that with possible small deviations for n = 12 which has the largest
multiplicities) the nearest-neighbour distributions for the Hecke triangles agree well with the
curves for non-tessellating triangles.

These figures (and others) demonstrate that the spectral statistics of the non-arithmetic
Hecke triangles (even with quite large degeneracies of periodic orbit lengths) at small distances
is rather well described by standard random matrix ensembles.

The contradiction between the observed random matrix statistics of the Hecke triangles
and deviations of correlation functions due to large multiplicities of periodic orbits (cf (80))
was partially resolved in [4]. In this paper it was demonstrated that the diagonal approximation
can, strictly speaking, be applied only for very small values of t < t1. If the mean multiplicity
increases like ḡ(l) ∼ eλl with a certain constant λ � 1/2 from [4] it follows that the time of
applicability of the diagonal approximation has the following estimate:

t1 ∼ 1

1 − λ

ln k

k
. (83)

During this time the form factor increases exponentially but it can reach only a value of the
order of

K(t1) ∼ k−(1−2λ)/(1−λ). (84)

For arithmetic systems λ = 1/2 (see [4]) and the form factor for the time of applicability of
the diagonal approximation becomes of the order of 1 which explains the Poisson character
of their spectral statistics. But for all non-arithmetic groups λ is less than 1/2 and the form
factor in the diagonal approximation increases only by a negative power of k. Therefore in the
semiclassical limit k → ∞ there is no apparent contradiction between observed GOE-type
local statistics and the change of correlation functions due to large multiplicities of periodic
orbits.

These arguments suggest that two-point form factors for non-arithmetic Hecke triangles
have the form indicated in figure 14. The peak at small values of t is due to large multiplicities
of periodic orbits. The magnitude of this peak and its position seem to decrease for large k.
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Figure 15. Smoothed number variance for the Hecke triangle with n = 5 (top graphs). Different
types of lines correspond to the number variance computed from the first 2000k levels. Solid
line—k = 1, dotted line—k = 2, dashed line—k = 3, long dashed line—k = 4, dot-dashed line—
k = 5. The thick line is the GOE prediction. Bottom graphs represent the same quantities for
the non-tessellating triangle with angle γ5 = 20π/99. For clarity the top graphs are shifted up by
0.2 unit.
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Figure 16. The same as in figure 15 but for the Hecke triangle with n = 7 (top graphs). Different
types of lines correspond to the averaged number variance computed from the first 4000k levels.
The bottom graphs are calculated for the non-tessellating triangle with angle γ 7 = 10π/71.

Though deviations from standard statistics should be small when k → ∞ the peak
indicated in figure 14 may influence the large distance spectral properties such as the number
variance (see, e.g., [3]). In figures 15–17 we present the number variance for the Hecke
triangles with n = 5, 7, 12 together with the corresponding values for non-tessellating triangles
(81). Due to large statistical errors in the computation of the number variance 2(L) we found
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Figure 17. The same as in figure 15 but for the Hecke triangle with n = 12 (top graphs). The
bottom graphs are calculated for the non-tessellating triangle with angle γ12 = 10π/119.

it convenient to plot in the figures not 2(L) itself but its averaged value defined in the following
way:

〈2(L)〉 ≡ 1

L

∫ L

0
2(l) dl. (85)

To demonstrate the evolution of the number variance with increasing energy in all figures we
present pictures for the averaged number variance with different numbers of levels.

For all non-tessellating (generic) triangles the number variance follows the GOE prediction
for small values of L and then saturates, as it should for dynamical systems [1, 2]. For the
Hecke triangles the number variance at small L also agrees with the GOE formula but then it
becomes bigger than this reference expression and only later it saturates but at a value different
from that of the corresponding very close-by non-tessellating triangle.

This overshooting looks like a direct confirmation of the conjectured form of the two-
point correlation form factor (cf figure 14) but careful calculation of this quantity requires a
resummation of, at least certain, non-diagonal terms and is beyond the scope of this paper.

7. Summary

We demonstrate both numerically and analytically that, at least, certain non-arithmetic Hecke
triangle groups have exponentially large multiplicities of periodic orbit lengths.

In groups under consideration, matrix elements of group matrices are integers of an
algebraic field of a finite degree and each group matrix gives rise naturally to q different
lengths corresponding to q different isomorphisms of the basis field. The main ingredient of
our approach to the problem of periodic orbit length multiplicity is the investigation of the
joint distribution of periodic orbits with all q transformed lengths fixed.

We conjecture that this distribution has a scaling form (46) and find the scaling
exponent numerically. For Hecke groups (24) with only one non-trivial isomorphism
the general inequality (66) is sufficient to demonstrate an exponential increase of the
multiplicities. Multiplicities obtained by this method are in good agreement with direct
numerical calculations.
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For general Hecke triangle groups we are not aware of analytical conditions of the
existence of necessary solutions. In all investigated cases (except for the groups (24) with
only one non-trivial isomorphism) the increase of multiplicities numerically is too small to
be observed from direct calculations of periodic orbits but the data fluctuate around a value
bigger than 2.

The spectral statistics of non-arithmetic Hecke triangles agrees with the GOE statistics at
small distances but deviates from usual expectations at large distances.
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Appendix A

To prove the inequality (66) it is slightly more convenient to describe conjugacy classes of the
Hecke triangle group matrices not by the code discussed in section 2 but by a code proposed
in [16] better suited for analytical calculations. In this code, the letters for the orientation
preserving subgroup of Gn are the following matrices,

gk(αn) = Uk−1T k = 1, . . . , n − 1 (A.1)

where U = T S and matrices T , S are the translation and inversion matrices which generate
the whole group Gn,

T =
(

1 α

0 1

)
S =

(
0 −1
1 0

)
(A.2)

with α = 2 cos π/n.
As in the previous code periodic orbits for the Hecke group Gn (with unit determinant)

are free words of letters gk , the only restriction being that all cyclic permutations of a word
give one orbit.

It is easy to check (e.g., by induction) that

gk =
(

ak ak+1

ak−1 ak

)
(A.3)

where ak ≡ ak(2 cos θ) are the values of the Chebyshev polynomials of the second kind,

ak(2 cos θ) = sin(kθ)

sin θ
(A.4)

computed at θ = π/n.
Let us introduce the following definition. We say that a function f (x) has the H-property

with a separating point h if

|f (x)| � f (h) for all |x| � h. (A.5)

The importance of this notion follows from the fact that if f1(x) and f2(x) both have the
H-property with separating point h then f1(x)f2(x) and f1(x)+f2(x) also have the H-property
with the same separating point. In particular, if one has a set of matrices whose elements all
have the H-property with a separating point h then all products of these matrices also have the
H-property with the same separating point.
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Let us prove first that matrix elements ak with k = 0, . . . , n have the H-property with the
separating point h = 2 cos(π/2n). Indeed

|ak(2 cos θ)| � 1

sin θ
. (A.6)

When 0 � θ � π/2 the equality sign in this inequality holds at the points

θm = π

2k
m (A.7)

where m is an odd integer, 1 � m � k.
Therefore when θ � π/2k

|ak(2 cos θ)| � 1

sin θ
� ak

(
2 cos

π

2k

)
. (A.8)

Moreover, ak(2 cos θ) is a decreasing function when 0 < θ < π/2k and ak(2 cos θ) �
ak(2 cos π/2n) when π/2n � θ � π/2k (and, of course, k � n). Together these
two inequalities prove that ak with k � n have the H-property with separating point
h = 2 cos(π/2n).

Second, ak(2 cos πp/n) = an−k(2 cos πp/n) for odd integer p. It means that for all
isomorphisms (22) ak(x) equals an−k(x) and only ak with k � n/2 are independent. Hence,
ak for all isomorphisms of the defining equation can be considered as polynomials of degree
not greater than n/2 and one can choose for all ak(2 cos πp/n) with k � n the same separating
constant h = 2 cos(π/n).

Third, as was stated above, all matrix elements obtained by taking the products of arbitrary
number of matrices gk also have the H-property with the separating constant h = 2 cos(π/n).

Combining all these arguments one proves that for all isomorphisms of the basis field
traces of the Hecke group matrices have the H-property with the same separating constant.
Because ∣∣∣∣cos

πk

n

∣∣∣∣ < cos
π

n
(A.9)

for all k �= 0, 1, n one gets that modulus of traces of the Hecke triangle group matrices
decreases for all non-trivial isomorphisms of the basis field thus proving the inequality (66).
For matrices with determinant equal −1 the same inequality follows by computing the square
of such matrices because the periodic orbit length for the square of any matrix is twice the
length corresponding to the initial matrix.

After this paper had been completed we became aware of [15] where the inequality (66)
was proved for all groups which permit the so-called modular embedding. From [7] it follows
that all triangle discrete groups belong to this class. Therefore, the inequality (66) is valid for
all triangle groups (and not only for the Hecke triangle groups considered in this paper).

Appendix B

The purpose of this appendix is to give arguments in favour of the representation (33) of the
joint probability density of periodic orbits with all transformed lengths fixed.

For discrete groups periodic orbits can be obtained from the product of a certain number
of matrices. Let us consider in a given code the product of n basis matrices

A(n) = An · An−1 · · · A1. (B.1)
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The total number of matrices with n symbols for a general code is exponential

ρ(n)
n→∞−→ ehn

n
(B.2)

where h is a constant called the topological entropy.
The length of the periodic orbit is related to matrix A asymptotically as

l = 2 ln |Tr A|. (B.3)

Therefore, matrices representing periodic orbits can be considered as the result of a random
process where matrices Ak are chosen randomly according to the code grammar. The
probability distribution of lengths for products of n such matrices is defined as the ratio
of the number of matrices with lengths in the interval [l, l + dl] divided by the total number of
matrices.

This distribution under quite general conditions [8, 10] has the Gaussian form

Pn(l) = 1√
2πσn

exp

(
− (l − ln)

2

2σ 2
n

)
(B.4)

where

ln = λ0n σ 2
n = σ 2

0 n. (B.5)

One of possible applications of such a distribution is the calculation of the total density of
periodic orbits of length l (see, e.g., [14]),

ρ(l) =
∫

ehn

n
Pn(l) dn. (B.6)

When l → ∞ the integral can be computed in the saddle point approximation and the total
density of periodic orbits has exponential asymptotics

ρ(l) = eκl

l
(B.7)

where

κ =
λ0 −

√
λ2

0 − 2hσ 2
0

σ 2
0

. (B.8)

For groups considered in the paper all matrix elements belong to an algebraic field of finite
degree which has q different isomorphisms. It means, in particular, that each product of n
group matrices A(n) as in (B.1) gives rise to q different lengths li(n) obtained by applying
each isomorphism ϕi to A(n),

li(n) = 2 ln |Tr ϕi(A(n))|. (B.9)

On the other hand ϕi(A(n)) can be obtained as the product of n transformed matrices ϕi(Ak)

as in (B.1). Therefore according to the above theorem each variable li is a random variable
whose distribution also has asymptotically the Gaussian form

Pn(li) = 1√
2πnσi

exp

(
− (li − λin)2

2nσ 2
i

)
(B.10)

with certain parameters λi and σi having the meaning of the mean value and the variance of
li(n).
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Let us conjecture that the mutual distribution of all li(n) together is also Gaussian

Pn(�l) =
√

det M

(2π)q/2
exp


− 1

2n

q∑
ij=1

Mij (li − λin)(lj − λjn)


 (B.11)

with a certain positive definite matrix Mij .
Analogous to equation (B.6) the total density of orbits with fixed li is

ρ(�l) =
∫ ∞

1

ehn

n
Pn(�l) dn. (B.12)

As above this integral can be computed in the saddle point approximation valid at large �l and
the result is

ρ(�l) =
√

det M

(2π)(q−1)/2(A(C − 2h))1/4
exp(B −

√
A(C − 2h)) (B.13)

where

A =
q∑

i,j=1

Mij li lj B =
q∑

i,j=1

Mij liλj C =
q∑

i,j=1

Mijλiλj . (B.14)

The exponent in (B.13) is an homogeneous function of lj and after the rescaling xj =
lj / l1 one obtains the scaling ansatz (46) with a specific scaling function which leads to
exponential asymptotics of the joint probability distribution as seems suggested by numerics
(cf figures 5–8).

The main drawback of such an approach is that the theorem about the Gaussian form of
the distribution of the product of n random matrices is valid only near the maximum of the
distribution. But the term ehn in (B.6) and (B.13) shifts the saddle point far from the maximum
and there exist no general arguments which would imply the smallness of corrections to the
parabolic form of the exponent. For certain groups and special codes it seems that one can
ignore such corrections in a region of interest but, in general, corrections are large and one has
to rely on the numerics as was done in the main part of the paper.
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